4.1 Article

Drug-Repurposing Screening Identifies a Gallic Acid Binding Site on SARS-CoV-2 Non-structural Protein 7

期刊

ACS PHARMACOLOGY & TRANSLATIONAL SCIENCE
卷 -, 期 -, 页码 578-586

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsptsci.2c00225578

关键词

COVID-19; SARS-CoV-2; native mass spectrometry; drug repurposing; antiviral

向作者/读者索取更多资源

SARS-CoV-2 is the cause of COVID-19 and the global pandemic. Repurposing approved drugs can accelerate clinical treatments. Gallic acid was found to bind to the viral protein nsp7, offering potential for SARS-CoV-2 therapeutic development.
SARS-CoV-2 is the agent responsible for acute respiratory disease COVID-19 and the global pandemic initiated in early 2020. While the record-breaking development of vaccines has assisted the control of COVID-19, there is still a pressing global demand for antiviral drugs to halt the destructive impact of this disease. Repurposing clinically approved drugs provides an opportunity to expediate SARS-CoV-2 treatments into the clinic. In an effort to facilitate drug repurposing, an FDA-approved drug library containing 2400 compounds was screened against the SARS-CoV-2 non-structural protein 7 (nsp7) using a native mass spectrometry-based assay. Nsp7 is one of the components of the SARS-CoV-2 replication/transcription complex essential for optimal viral replication, perhaps serving to off-load RNA from nsp8. From this library, gallic acid was identified as a compound that bound tightly to nsp7, with an estimated K-d of 15 mu M. NMR chemical shift perturbation experiments were used to map the ligand-binding surface of gallic acid on nsp7, indicating that the compound bound to a surface pocket centered on one of the protein's four alpha-helices (alpha 2). The identification of the gallic acid-binding site on nsp7 may allow development of a SARS-CoV-2 therapeutic via artificialintelligence-based virtual docking and other strategies..

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据