4.5 Article

Effect of acidic pretreatment on the microstructural arrangement and anaerobic digestion of Arachis hypogea shells; and process parameters optimization using response surface methodology

期刊

HELIYON
卷 9, 期 4, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.heliyon.2023.e15145

关键词

Lignocellulose; Arachis hypogea shells; Pretreatments; Anaerobic digestion; Biogas; RSM

向作者/读者索取更多资源

This study investigated the impact of acidic pretreatment on Arachis hypogea shells and different conditions were considered. The results showed that acidic pretreatment could disrupt the recalcitrance features of the shells, making them more accessible for microbial activities during anaerobic digestion. Therefore, acidic pretreatment presents a novel means of energy recovery from lignocellulosic feedstocks and can be explored at an industrial scale.
Enzymatic hydrolysis of lignocellulose feedstocks has been observed as the rate-limiting stage during anaerobic digestion. This necessitated the need for pretreatment before anaerobic digestion for an effective and efficient process. Therefore, this study investigated the impact of acidic pretreatment on Arachis hypogea shells, and different conditions of H2SO4 concentration, exposure time, and autoclave temperature were considered. The substrates were digested for 35 days at a mesophilic temperature to assess the impact of pretreatment on the microstructural organization of the substrate. For the purpose of examining the interactive correlations between the input parameters, response surface methodology (RSM) was used. The result reveals that acidic pretreatment has the strength to disrupt the recalcitrance features of Arachis hypogea shells and make them accessible for microorganisms' activities during anaerobic digestion. In this context, H2SO4 with 0.5% v. v-1 for 15 min at an autoclave temperature of 90 degrees C increases the cumulative biogas and methane released by 13 and 178%, respectively. The model's coefficient of determination (R2) demonstrated that RSM could model the process. Therefore, acidic pretreatment poses a novel means of total energy recovery from lignocellulose feedstock and can be investigated at the industrial scale.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据