4.7 Article

Experiments and simulation of adsorption characteristics of typical neonicotinoids in urban stream sediments

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-023-27025-x

关键词

Neonicotinoids; Sediments; Adsorption; Multiple regression equation; Parameters

向作者/读者索取更多资源

This study investigated the adsorption properties of four selected neonicotinoids (NEOs) on urban tidal stream sediments. Results showed that the adsorption of NEOs onto sediments followed a linear isotherm model, and the adsorption amounts varied for different NEOs. The adsorption processes were exothermic reactions, and their rates were influenced by pH, flow rates, and organic matter content.
Sediment adsorption is one of the main environmental fates of neonicotinoids (NEOs) in aquatic environments. Little information is available on for the adsorption characteristics of NEOs on urban stream sediments. In this study, urban tidal stream sediments were collected to determine the adsorption properties of four selected NEOs. The influence of environmental factors on NEO adsorption was determined by the RSM-CCD method. The NEO adsorption rates on sediments were established by multiple regression equations. As a result, the adsorption of four NEOs onto sediments fitted a linear isotherm model. The adsorption amounts of thiacloprid (THA), clothianidin (CLO), acetamiprid (ACE), and imidacloprid (IMI) were 1.68 to 2.24, 1.71 to 2.89, 1.88 to 3.07, and 2.23 to 3.16 mg/kg, respectively. The adsorption processes of four NEOs on urban sediments were favorable. Moreover, adsorption behaviors of NEOs were typical physical adsorption and readily adsorbed onto urban sediments. The adsorption processes of NEOs were exothermic reactions, and their adsorption rates decreased with increasing pH. Flow rates and organic matter contents could promote the adsorption ratios of typical NEOs. Multiple linear regression was used to assess the relationships between the adsorption rates of NEOs and environmental factors. The p-values of the fitting equations of adsorption rates were all less than 0.05. Within the ranges of concentration of the investigated factors, the multiple regression equations were able to reasonably model and predict the sorption of typical NEOs onto urban stream sediments. Therefore, the adsorption rate equations effectively predicted the NEO adsorption performance of urban streams and were helpful for controlling risk assessment of NEOs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据