4.5 Article

Melatonin improves drought stress tolerance of pepper (Capsicum annuum) plants via upregulating nitrogen metabolism

期刊

FUNCTIONAL PLANT BIOLOGY
卷 -, 期 -, 页码 -

出版社

CSIRO PUBLISHING
DOI: 10.1071/FP23060

关键词

antioxidants; glyoxalase system; melatonin; nitrogen; nitrogen metabolism; pepper; ROS; water stress

向作者/读者索取更多资源

This study investigated the mechanisms by which melatonin (MT) improves drought tolerance in pepper plants. The plants were treated with a foliar spray of 0.1 mM MT and grown under 80% and 40% field capacity for 3 days. Drought stress significantly decreased plant dry weight, water content, PSII efficiency, chlorophyll, protein, and nitrogen content, while increasing oxidative stress markers and enzyme activities. MT pre-treatment alleviated oxidative stress and improved nitrogen metabolism by activating various enzymes. It also reduced nitrogen content and enhanced plant growth and photosynthesis.
While ameliorating effects of melatonin (MT) on abiotic stress tolerance in plants are widely reported, the mechanism that underlies this process remains elusive. This work investigated mechanisms by which MT improved drought tolerance in pepper (Capsicum annuum) plants. A foliar spray of 0.1 mM MT treatment was applied to plants grown at 80% and 40% of full field capacity for 3 days. Drought stress caused a significant decrease in plant dry weight, relative water content, leaf water potential, PSII efficiency (F-v/F-m ratio), chlorophyll, soluble protein, leaf and root nitrogen content. Drought increased hydrogen peroxide, malondialdehyde (MDA), nitrate, ammonium, free amino acids, soluble sugars, proline and glycine betaine. Drought also increased peroxidase (POD), glutathione S-transferase (GST) and catalase (CAT) activities, electrolyte leakage (EL) and methylglyoxal (MG). MT pre-treatment reduced oxidative stress and improved nitrogen metabolism by activating various enzymes such as nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthetase (GOGAT) and glutamine dehydrogenase (GDH) activities. It also activated enzymes related to the glyoxalase system (Gly I and Gly II) and decreased NO3-, NH4+ and free amino acid content. Our study suggests a cost-effective and sustainable solution to improve crop productivity in water-limited conditions, by enhancing plant growth, photosynthesis and nitrogen content.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据