4.5 Article

Dexamethasone Induces Senescence-Associated Changes in Trabecular Meshwork Cells by Increasing ROS Levels Via the TGFβ/Smad3-NOX4 Axis

期刊

CELL TRANSPLANTATION
卷 32, 期 -, 页码 -

出版社

SAGE PUBLICATIONS INC
DOI: 10.1177/09636897231177356

关键词

dexamethasone; trabecular meshwork; senescence; Smad3; ROS; NOX4

向作者/读者索取更多资源

Using RNA-Seq and bioinformatic analysis, this study investigated the effects of dexamethasone (DEX) on human trabecular meshwork cells (HTMCs). It was found that DEX induces cellular senescence in HTMCs by activating the TGF beta/Smad3/NOX4 pathway, leading to increased oxidative stress and the development of glaucoma.
Glaucoma is a serious complication of glucocorticoid (GC) therapy arising through elevations in intraocular pressure (IOP). Dexamethasone (DEX) is reported to contribute to elevated IOP through different effects on the trabecular meshwork but whether DEX contributes to glaucoma development through the induction of cellular senescence is still unclear. We explored the actions of DEX on transformed human trabecular meshwork cells (HTMCs) using RNA-seq and conducted bioinformatic analyses to determine the affected pathways. Among the 4,103 differentially expressed genes identified in transformed HTMCs treated with 400 nM DEX (2,036 upregulated and 2,067 downregulated genes, respectively), bioinformatic analyses revealed significant enrichment and potential interplay between the transforming growth factor beta (TGF beta)41; signaling and cellular senescence pathways. DEX treatment induced senescence changes in primary and transformed HTMCs as indicated by increases in SA-beta-gal positivity, interleukin (IL)-6 secretion, and senescence-associated heterochromatin foci (SAHF) along with selective accumulation of senescence marker p15 and elevations in reactive oxygen species (ROS) levels. Notably, the DEX-induced senescence changes were rescued by treatment with the TGF beta/Smad3 pathway inhibitor SIS3. Furthermore, we show that DEX increases cellular ROS levels via upregulation of NADPH oxidase 4 (NOX4) through activation of Smad3, and that SIS3 decreases ROS levels by downregulating NOX4. Instructively, inhibiting NOX4 with GLX351322 and scavenging ROS with NAC were both effective in preventing DEX-induced senescence changes. Similarly, we found in the mouse model that DEX-ac upregulated p15 and NOX4 expression in the trabecular meshwork, with cotreatment with GLX351322 alleviating elevations in IOP. We establish that DEX induces senescence changes in HTMCs by increasing ROS levels via the TGF beta/Smad3/NOX4 axis, increasing IOP and contributing to glaucoma development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据