4.7 Article

The potential of biochar as a microbial carrier for agricultural and environmental applications

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 886, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2023.163968

关键词

biochar; Microbial carrier; Agricultural application; Environmental implications; Microbial immobilization; Nutrient carrier

向作者/读者索取更多资源

Biochar is an effective carrier for microbial inoculants due to its properties that promote microbial life. It contains organic carbon, nutrients, and functional groups that facilitate microbial adhesion and proliferation. Moreover, biochar-based microbial inoculants have been shown to enhance the persistence and colonization of microbes in soil and plant roots, benefiting soil biochemical processes and remediation of soil contamination. Future research should focus on improving carrier material performance and expanding the potential applications of this emerging biochar-based technology.
Biochar can be an effective carrier for microbial inoculants because of its favourable properties promoting microbial life. In this review, we assess the effectiveness of biochar as a microbial carrier for agricultural and environmental applications. Biochar is enriched with organic carbon, contains nitrogen, phosphorus, and potassium as nutrients, and has a high porosity and moisture-holding capacity. The large number of active hydroxyl, carboxyl, sulfonic acid group, amino, imino, and acylamino hydroxyl and carboxyl functional groups are effective for microbial cell adhesion and proliferation. The use of biochar as a carrier of microbial inoculum has been shown to enhance the persistence, survival and colonization of inoculated microbes in soil and plant roots, which play a crucial role in soil biochemical processes, nutrient and carbon cycling, and soil contamination remediation. Moreover, biochar-based microbial inoc-ulants including probiotics effectively promote plant growth and remediate soil contaminated with organic pollutants. These findings suggest that biochar can serve as a promising substitute for non-renewable substrates, such as peat, to formulate and deliver microbial inoculants. The future research directions in relation to improving the carrier material performance and expanding the potential applications of this emerging biochar-based microbial immobilization tech-nology have been proposed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据