4.5 Article

Methane, ethane, and propane production in Greenland ice core samples and a first isotopic characterization of excess methane

期刊

CLIMATE OF THE PAST
卷 19, 期 5, 页码 999-1025

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/cp-19-999-2023

关键词

-

向作者/读者索取更多资源

Air trapped in polar ice provides unique records of past atmospheric composition, including greenhouse gases like methane and short-lived trace gases like ethane and propane. Recent research revealed disagreements in the methane concentration during the last glacial in Greenland ice. By analyzing samples, it was found that elevated alkane concentrations were produced during the melt extraction process of the wet-extraction technique, indicating an abiotic decomposition of organic matter rather than a microbial origin.
Air trapped in polar ice provides unique records of the past atmospheric composition ranging from key greenhouse gases such as methane (CH4) to short-lived trace gases like ethane (C2H6) and propane (C3H8). Recently, the comparison of CH4 records obtained using different extraction methods revealed disagreements in the CH4 concentration for the last glacial in Greenland ice. Elevated methane levels were detected in dust-rich ice core sections measured discretely, pointing to a process sensitive to the melt extraction technique. To shed light on the underlying mechanism, we performed targeted experiments and analyzed samples for methane and the short-chain alkanes ethane and propane covering the time interval from 12 to 42 kyr. Here, we report our findings of these elevated alkane concentrations, which scale linearly with the amount of mineral dust within the ice samples. The alkane production happens during the melt extraction step of the classic wet-extraction technique and reaches 14 to 91 ppb of CH4 excess in dusty ice samples. We document for the first time a co-production of excess methane, ethane, and propane, with the observed concentrations for ethane and propane exceeding their past atmospheric background at least by a factor of 10. Independent of the produced amounts, excess alkanes were produced in a fixed molar ratio of approximately 14 : 2 : 1, indicating a shared origin. The measured carbon isotopic signature of excess methane is ( -47 :0 +/- 2 :9)parts per thousand and its deuterium isotopic signature is ( -326 +/- 57) parts per thousand. With the co-production ratios of excess alkanes and the isotopic composition of excess methane we established a fingerprint that allows us to constrain potential formation processes. This fingerprint is not in line with a microbial origin. Moreover, an adsorption-desorption process of thermogenic gas on dust particles transported to Greenland does not appear very likely. Instead, the alkane pattern appears to be indicative of abiotic decomposition of organic matter as found in soils and plant leaves.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据