4.6 Article

Heat transport in Weyl semimetals in the hydrodynamic regime

期刊

PHYSICAL REVIEW B
卷 107, 期 23, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.107.235102

关键词

-

向作者/读者索取更多资源

We investigate heat transport in a Weyl semimetal with broken time-reversal symmetry in the hydrodynamic regime. The longitudinal heat conductivity is determined by momentum relaxation time, while the longitudinal electric conductivity is controlled by inelastic scattering time. The presence of the Seebeck effect affects the heat conductivity and Lorenz ratio, with the transverse heat conductivity being enhanced by the transverse Seebeck effect.
We study heat transport in a Weyl semimetal with broken time-reversal symmetry in the hydrodynamic regime. At the neutrality point, the longitudinal heat conductivity is governed by the momentum relaxation (elastic) time, while the longitudinal electric conductivity is controlled by the inelastic scattering time. In the hydrodynamic regime, this leads to a large longitudinal Lorenz ratio. As the chemical potential is tuned away from the neutrality point, the longitudinal Lorenz ratio decreases because of suppression of the heat conductivity by the Seebeck effect. The Seebeck effect (thermopower) and the open circuit heat conductivity are intertwined with the electric conductivity. The magnitude of the Seebeck tensor is parametrically enhanced, compared to the noninteracting model, in a wide parameter range. While the longitudinal component of Seebeck response decreases with increasing electric anomalous Hall conductivity sigma xy, the transverse component depends on sigma xy in a nonmonotonous way. Via its effect on the Seebeck response, large sigma xy enhances the longitudinal Lorenz ratio at a finite chemical potential. At the neutrality point, the transverse heat conductivity is determined by the Wiedemann-Franz law. Increasing the distance from the neutrality point, the transverse heat conductivity is enhanced by the transverse Seebeck effect and follows its nonmonotonous dependence on sigma xy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据