4.7 Article

Viscous attenuation of gravitational waves propagating through an inhomogeneous background

期刊

EUROPEAN PHYSICAL JOURNAL C
卷 83, 期 5, 页码 -

出版社

SPRINGER
DOI: 10.1140/epjc/s10052-023-11605-9

关键词

-

向作者/读者索取更多资源

We investigate the effects of matter distribution inhomogeneities and fluid viscosity on the observables associated with gravitational wave sources in the late-time Universe. Our results show that viscosity significantly affects the precision measurements of compact-binary gravitational wave sources within an inhomogeneous Universe model.
We consider the propagation of gravitational waves in the late-time Universe in the presence of matter distribution inhomogeneities, and we also consider the cosmic fluid to be viscous. In this work, we investigate the cumulative effect of inhomogeneities and viscosity of the cosmic-fluid on the observables associated with the sources of the gravitational waves. Employing Buchert's averaging procedure in the backreaction framework, we consider a model of spacetime in which matter is distributed in-homogeneously across space. Using the modified redshift versus distance relation, through the averaging process in the context of the model, we study the variation of the redshift-dependent part of the observed gravitational wave amplitude for different combinations of our model parameters while simultaneously considering damping of the gravitational wave amplitude due to viscosity of the cosmic-fluid. Then, we investigate the differences occurring in the variation of the redshift-dependent part of the observed gravitational wave amplitude due to consideration of viscous attenuation. We show that there are significant deviations after the inclusion of viscous attenuation in our analysis, depending on the chosen value of the coefficient of viscosity. Our result signifies the importance of the effect of viscosity, within the model of an inhomogeneous Universe, on precision measurements of parameters of compact-binary sources of gravitational waves.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据