4.7 Article

Two-level type theory and applications

期刊

PHYSICAL REVIEW E
卷 107, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.107.054607

关键词

-

向作者/读者索取更多资源

Active particles that self-propel by transforming energy into mechanical motion are the focus of research in mathematics, physics, and chemistry. In this study, we examine the dynamics of non-spherical inertial active particles moving in a harmonic potential, taking into account the role of eccentricity. We compare overdamped and underdamped models for elliptical particles and find that increasing eccentricity leads to substantial differences between the two dynamics.
Active particles that self-propel by transforming energy into mechanical motion represent a growing area of research in mathematics, physics, and chemistry. Here we investigate the dynamics of nonspherical inertial active particles moving in a harmonic potential, introducing geometric parameters which take into account the role of eccentricity for nonspherical particles. A comparison between the overdamped and underdamped models for elliptical particles is performed. The model of overdamped active Brownian motion has been used to describe most of the basic aspects of micrometer-sized particles moving in a liquid (microswimmers). We consider active particles by extending the active Brownian motion model to incorporate translation and rotation inertia and account for the role of eccentricity. We show how the overdamped and the underdamped models behave in the same way for small values of activity (Brownian case) if eccentricity is equal to zero, but increasing eccentricity leads the two dynamics to substantially depart from each other-in particular, the action of a torque induced by external forces, induced a marked difference close to the walls of the domain if eccentricity is high. Effects induced by inertia include an inertial delay time of the self-propulsion direction from the particle velocity, and the differences between the overdamped and underdamped systems are particularly evident in the first and second moments of the particle velocities. Comparison with the experimental results of vibrated granular particles shows good agreement and corroborates the notion that self-propelling massive particles moving in gaseous media are dominated by inertial effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据