4.6 Article

Mass-driven vortex collisions in flat superfluids

期刊

PHYSICAL REVIEW A
卷 107, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.107.053317

关键词

-

向作者/读者索取更多资源

Quantum vortices with effective inertial mass, introduced by massive particles in their cores, exhibit new phenomena beyond the standard picture of massless superfluid vortex dynamics. In this study, we propose a scheme to generate controllable and repeatable collisional events between massive vortices. We demonstrate two mass-driven fundamental processes: the annihilation of two counter-rotating vortices and the merging of two co-rotating vortices. This reveals new mechanisms for incompressible-to-compressible kinetic-energy conversion and the stabilization of doubly quantized vortices in flat superfluids.
Quantum vortices are often endowed with an effective inertial mass, due, for example, to massive particles in their cores. Such massive vortices display new phenomena beyond the standard picture of superfluid vortex dynamics, where mass is neglected. In this work, we demonstrate that massive vortices are allowed to collide, as opposed to their massless counterparts. We propose a scheme to generate controllable, repeatable, deterministic collisional events in pairs of quantum vortices. We demonstrate two mass-driven fundamental processes: (i) the annihilation of two counter-rotating vortices and (ii) the merging of two corotating vortices, thus pointing out new mechanisms supporting incompressible-to-compressible kinetic-energy conversion, as well as doubly quantized vortex stabilization in flat superfluids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据