4.3 Article

Effects of turbidity, temperature and predation cue on the stress response of juvenile delta smelt

期刊

CONSERVATION PHYSIOLOGY
卷 11, 期 1, 页码 -

出版社

OXFORD UNIV PRESS
DOI: 10.1093/conphys/coad036

关键词

supplementation; San Francisco Estuary; delta smelt; conservation; climate change

向作者/读者索取更多资源

The San Francisco Estuary (SFE) is a severely degraded ecosystem, with the delta smelt close to extinction. This study investigates how environmental changes, such as reduced turbidity, increased temperature, and invasive predators, affect the physiology and stress response of juvenile delta smelt. Turbidity has the greatest impact, leading to reduced cortisol and increased glucose and lactate in the fish. Elevated temperatures decrease energy availability, while predator cues have minimal effects on stress response. This study highlights the importance of considering multiple stressors for the management and conservation of delta smelt.
The San Francisco Estuary (SFE) is one of the most degraded ecosystems in the United States, and organisms that inhabit it are exposed to a suite of environmental stressors. The delta smelt (Hypomesus transpacificus), a small semi-anadromous fish endemic to the SFE and considered an indicator species, is close to extinction in the wild. The goal of this study was to investigate how environmental alterations to the SFE, such as reductions in turbidities, higher temperatures and increased prevalence of invasive predators affect the physiology and stress response of juvenile delta smelt. Juvenile delta smelt were exposed to two temperatures (17 and 21 & DEG;C) and two turbidities (1-2 and 10-11 NTU) for 2 weeks. After the first week of exposure, delta smelt were exposed to a largemouth bass (Micropterus salmoides) predator cue at the same time every day for 7 days. Fish were measured and sampled on the first (acute) and final (chronic) day of exposures to predator cues and later analyzed for whole-body cortisol, glucose, lactate, and protein. Length and mass measurements were used to calculate condition factor of fish in each treatment. Turbidity had the greatest effect on juvenile delta smelt and resulted in reduced cortisol, increased glucose and lactate, and greater condition factor. Elevated temperatures reduced available energy in delta smelt, indicated by lower glucose and total protein, whereas predator cue exposure had negligible effects on their stress response. This is the first study to show reduced cortisol in juvenile delta smelt held in turbid conditions and adds to the growing data that suggest this species performs best in moderate temperatures and turbidities. Multistressor experiments are necessary to understand the capacity of delta smelt to respond to the multivariate and dynamic changes in their natural environment, and results from this study should be considered for management-based conservation efforts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据