4.8 Article

A general thermodynamics-triggered competitive growth model to guide the synthesis of two-dimensional nonlayered materials

期刊

NATURE COMMUNICATIONS
卷 14, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-36619-5

关键词

-

向作者/读者索取更多资源

A general thermodynamics-triggered competitive growth (TTCG) model and a universal hydrate-assisted chemical vapor deposition strategy were proposed to synthesize various 2D nonlayered transition metal oxides with room-temperature magnetic properties. This study provides new theoretical and experimental approaches for the synthesis of 2D nonlayered materials.
Two-dimensional (2D) nonlayered materials have recently provoked a surge of interest due to their abundant species and attractive properties with promising applications in catalysis, nanoelectronics, and spintronics. However, their 2D anisotropic growth still faces considerable challenges and lacks systematic theoretical guidance. Here, we propose a general thermodynamics-triggered competitive growth (TTCG) model providing a multivariate quantitative criterion to predict and guide 2D nonlayered materials growth. Based on this model, we design a universal hydrate-assisted chemical vapor deposition strategy for the controllable synthesis of various 2D nonlayered transition metal oxides. Four unique phases of iron oxides with distinct topological structures have also been selectively grown. More importantly, ultra-thin oxides display high-temperature magnetic ordering and large coercivity. MnxFeyCo3-x-yO4 alloy is also demonstrated to be a promising room-temperature magnetic semiconductor. Our work sheds light on the synthesis of 2D nonlayered materials and promotes their application for room-temperature spintronic devices. 2D nonlayered materials exhibit interesting properties for catalysis, nanoelectronics and spintronics applications, but their growth is still challenging. Here, the authors report a theoretical model and an experimental strategy to synthesize various 2D nonlayered transition metal oxides with room-temperature magnetic properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据