4.6 Article Proceedings Paper

Nanoparticle- Surfactant Stabilized Strong Foam for Enhanced Oil Recovery in High- Salinity Fractured Carbonate Reservoirs

期刊

SPE JOURNAL
卷 28, 期 3, 页码 1097-1107

出版社

SOC PETROLEUM ENG

关键词

-

向作者/读者索取更多资源

A stable foam can be formed in high-salinity brine using a nonionic surfactant and ethyl cellulose nanoparticles (ECNP). Injecting this strong foam into fractured carbonate cores can significantly improve oil recovery by diverting more gas into the matrix for displacement.
Foam flooding can minimize bypassing in gasfloods in fractured reservoirs. Finding a foam formulation effective in high-salinity brine is challenging, especially with divalent cations, e.g., American Petroleum Institute (API) brine (8% NaCl with 2% CaCl2). When formulating with nanoparticles, the colloidal dispersion stability is difficult due to the dramatic reduction in zeta potential and the Debye length at high salinity. The aim of this work was to develop a strong foam in API brine at the ambient temperature, using a nonionic surfactant and ethyl cellulose nanoparticles (ECNP), for gasflooding in fractured carbonate reservoirs. ECNPs was synthesized and dispersed in API brine using a nonionic surfactant (also denoted as SF). SF and SF/ECNP foams were generated, and their stability was studied at atmospheric pressure and 950 psi. Foam mobility was measured in a sandpack at high pressure. Foam flood experiments were conducted in oil-saturated fractured carbonate cores. The nonionic surfactant proved to be a good dispersion agent for ECNP in API brine. The SF/ECNP mixture stabilized foam in API brine, even in the presence of oil. Injecting a partially miscible gas (below its minimum miscibility pressure) as an SF foam into a fractured core more than doubles the oil recovery over injection of the gas alone. The injection of the strong foam (SF/ECNP) further improves the oil recovery over that of the SF foam, indicating the synergy between ECNP and surfactant. ECNP accumulates in the foam lamella and induces larger pressure gradients in the fracture to divert more gas into the matrix for oil displacement.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据