4.6 Article

Fabricating defogging metasurfaces via a water-based colloidal route

期刊

MATERIALS HORIZONS
卷 10, 期 9, 页码 3749-3760

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3mh00625e

关键词

-

向作者/读者索取更多资源

Metamaterials, possessing unique properties not found in nature, have become a popular subject of research and engineering. This paper presents an effective method to produce metasurfaces with a combination of optical and thermal properties. The method utilizes liquid crystalline suspensions of nanosheets coated onto various substrates, allowing for efficient conversion of sunlight into heat. This scalable and affordable wet colloidal processing technique offers a new way to create metamaterials without high vacuum or lithographic techniques.
Metamaterials possess exotic properties that do not occur in nature and have attracted significant attention in research and engineering. Two decades ago, the field of metamaterials emerged from linear electromagnetism, and today it encompasses a wide range of aspects related to solid matter, including electromagnetic and optical, mechanical and acoustic, as well as unusual thermal or mass transport phenomena. Combining different material properties can lead to emergent synergistic functions applicable in everyday life. Nevertheless, making such metamaterials in a robust, facile, and scalable manner is still challenging. This paper presents an effective protocol allowing for metasurfaces offering a synergy between optical and thermal properties. It utilizes liquid crystalline suspensions of nanosheets comprising two transparent silicate monolayers in a double stack, where gold nanoparticles are sandwiched between the two silicate monolayers. The colloidally stable suspension of nanosheets was applied in nanometre-thick coatings onto various substrates. The transparent coatings serve as absorbers in the infrared spectrum allowing for the efficient conversion of sunlight into heat. The peculiar metasurface couples plasmon-enhanced adsorption with anisotropic heat conduction in the plane of the coating, both at the nanoscale. Processing of the coating is based on scalable and affordable wet colloidal processing instead of having to apply physical deposition in high vacuum or lithographic techniques. Upon solar irradiation, the colloidal metasurface is quickly (60% of the time taken for the non-coated glass) heated to the level where complete defogging is assured without sacrificing transparency in the visible range. The protocol is generally applicable allowing for intercalation of any nanoparticles covering a range of physical properties that are then inherited to colloidal nanosheets. Because of their large aspect ratio, the nanosheets will inevitably orient parallel to any surface. This will allow for a toolbox capable of mimicking metamaterial properties while assuring facile processing via dip coating or spray coating.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据