4.7 Article

Self-diffusion of a relativistic Lennard-Jones gas via semirelativistic molecular dynamics

期刊

PHYSICAL REVIEW E
卷 107, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.107.054138

关键词

-

向作者/读者索取更多资源

The capability of molecular dynamics simulations to handle relativistic dynamics is improved by including relativistic kinetic energy. Specifically, relativistic corrections to the diffusion coefficient are examined for argon gas modeled with a Lennard-Jones interaction. Due to the short-range nature of the Lennard-Jones interaction, forces are transmitted instantaneously without retardation, which is an allowable approximation. At a mass density of 1.4 g/cm3, significant deviations from classical results are observed at temperatures above kBT approximate to 0.05 mc2, corresponding to an average thermal velocity of 32% of the speed of light. For temperatures approaching kBT approximate to mc2, the semirelativistic simulations agree with analytical results for hard spheres, indicating that this is a good approximation for diffusion effects.
The capability for molecular dynamics simulations to treat relativistic dynamics is extended by the inclusion of relativistic kinetic energy. In particular, relativistic corrections to the diffusion coefficient are considered for an argon gas modeled with a Lennard-Jones interaction. Forces are transmitted instantaneously without being retarded, an approximation that is allowed due to the short-range nature of the Lennard-Jones interaction. At a mass density of 1.4 g/cm3, significant deviations from classical results are observed at temperatures above kBT approximate to 0.05 mc2, corresponding to an average thermal velocity of 32% of the speed of light. For temperatures approaching kBT approximate to mc2, the semirelativistic simulations agree with analytical results for hard spheres, which is seen to be a good approximation as far as diffusion effects are concerned.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据