4.6 Article

Dispersion tuning of nonlinear optical pulse dynamics in gas-filled hollow capillary fibers

期刊

PHYSICAL REVIEW A
卷 107, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.107.063512

关键词

-

向作者/读者索取更多资源

We investigated the nonlinear optical pulse dynamics of ultrashort laser pulses in gas-filled hollow capillary fibers with different dispersion regimes achieved by adjusting the gas pressure. The results showed various soliton-plasma effects in the anomalous dispersion regime, pulse splitting and cross-phase modulation near the zero-dispersion wavelength, and the generation of a broad and flat supercontinuum in the normal dispersion regime. The experimental results in the latter regime were influenced by self-focusing and ionization effects, which altered the spatial and temporal shape of the pulse.
We experimentally investigate the nonlinear optical pulse dynamics of ultrashort laser pulses propagating in gas-filled hollow capillary fibers in different dispersion regimes, which are achieved by tuning the gas pressure. When the pulse propagates in the anomalous dispersion regime we observe soliton dynamics accompanied with soliton-plasma effects, such as self-compression, resonant dispersive-wave emission in the fundamental as well as in higher-order modes, soliton blueshifting, and ionization-induced pulse splitting. Propagation of the pulse in the vicinity of the zero-dispersion wavelength results in pulse splitting and subsequent cross-phase modulation leading to the generation of an additional frequency-shifted band and a three-octave broad supercontinuum. In the case of pulses propagating in normal dispersion we observe the generation of a broad and flat supercontinuum. In this regime, the experimental results are less well described by simulations that consider only the propagation dynamics inside the fiber. Free-space simulations of the beam propagation in the bulk gas, before the capillary entrance, suggest that this discrepancy is caused by self-focusing and ionization altering the pulse spatial and temporal shape, affecting both the coupling efficiency and the subsequent propagation inside the capillary.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据