4.6 Article

Non-Abelian anyons with Rydberg atoms

期刊

PHYSICAL REVIEW A
卷 107, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.107.062407

关键词

-

向作者/读者索取更多资源

We study the emergence of topological matter in two-dimensional systems of neutral Rydberg atoms in Ruby lattices. While Abelian anyons have been predicted in such systems, non-Abelian anyons, which would form a substrate for fault-tolerant quantum computing, have not been generated. We obtain the topologically distinct ground states of the system numerically using the infinite Density Matrix Renormalization Group technique. We discuss how these topological states can be created using ancilla atoms of a different type. We show that a system with 2N + 2 punctures and an equal number of ancilla atoms leads to N logical qubits whose Hilbert space is determined by a set of stabilizing conditions on the ancilla atoms. Quantum gates can be implemented using a set of gates acting on the ancilla atoms that commute with the stabilizers and realize the braiding group of non-Abelian Ising anyons.
We study the emergence of topological matter in two-dimensional systems of neutral Rydberg atoms in Ruby lattices. While Abelian anyons have been predicted in such systems, non-Abelian anyons, which would form a substrate for fault-tolerant quantum computing, have not been generated. To generate anyons with non-Abelian braiding statistics, we consider systems with mixed-boundary punctures. We obtain the topologically distinct ground states of the system numerically using the infinite Density Matrix Renormalization Group technique. We discuss how these topological states can be created using ancilla atoms of a different type. We show that a system with 2N + 2 punctures and an equal number of ancilla atoms leads to N logical qubits whose Hilbert space is determined by a set of stabilizing conditions on the ancilla atoms. Quantum gates can be implemented using a set of gates acting on the ancilla atoms that commute with the stabilizers and realize the braiding group of non-Abelian Ising anyons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据