4.6 Article

Multiple organelle-targeted 1,8-naphthyridine derivatives for detecting the polarity of organelles

期刊

JOURNAL OF MATERIALS CHEMISTRY B
卷 11, 期 30, 页码 7134-7143

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3tb00601h

关键词

-

向作者/读者索取更多资源

Four 1,8-naphthyridine derivatives (1a-1d) with different organelle targeting abilities were synthesized. The optical properties of the derivatives were characterized, showing a red-shift of fluorescence emission with increasing system polarity. Colocalization imaging experiments confirmed the organelle-targeting capabilities of the derivatives and their ability to monitor organelle polarity fluctuation. This work proposes a new molecular design idea for developing polarity-sensitive fluorescent probes with organelle targeting.
Four 1,8-naphthyridine derivatives (1a-1d) with different organelle targeting abilities were obtained using the Knoevenagel condensation reaction of 1,8-naphthyridine with 4-(N,N-diethylamino)benzaldehyde (2a), 4-(N,N-diphenylamino)benzaldehyde (2b), 4-(piperazin-1-yl)benzaldehyde (2c) and 4-(ethyl(4-formylphenyl)amino)-N-(2-((4-methylphenyl)sulfonamido)ethyl)butanamide (2d), respectively. The maximal absorption bands of dyes 1a-1d were observed at 375-447 nm, while their maximum emission peaks were situated at 495-605 nm. The optical properties showed that the fluorescence emission of dyes 1a-1d is shifted toward greater wavelengths as the system polarity (Delta f) increased. Meanwhile, with increasing polarity of the mixed 1,4-dioxane/H2O system, the fluorescence intensity of dyes 1a-1d gradually decreased. Furthermore, the fluorescence intensity of 1a-1d enhanced by 12-239 fold as the polarity of 1,4-dioxane/ H2O mixtures declined. 1a-1d had a large Stokes shift (up to 229 nm) in polar solvents in comparison to nonpolar solvents. The colocalization imaging experiments demonstrated that dyes 1a-1d (3-10 mu M) were located in mitochondria, lipid droplets, lysosomes and the endoplasmic reticulum in living HeLa cells, respectively; and they could monitor the polarity fluctuation of the corresponding organelles. Consequently, this work proposes a molecular design idea with different organelle targeting capabilities based on the same new fluorophore, and this molecular design idea may provide more alternatives for polarity-sensitive fluorescent probes with organelle targeting.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据