4.7 Article

Engineering an NADPH/NADP+ Redox Biosensor in Yeast

期刊

ACS SYNTHETIC BIOLOGY
卷 5, 期 12, 页码 1546-1556

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssynbio.6b00135

关键词

redox; biosensor; dosage-sensitive genes; yeast

资金

  1. Novo Nordisk Foundation
  2. NNF Center for Biosustainability [Synthetic Biology Tools for Yeast, iLoop] Funding Source: researchfish
  3. Novo Nordisk Fonden [NNF10CC1016517] Funding Source: researchfish

向作者/读者索取更多资源

Genetically encoded biosensors have emerged as powerful tools for timely and precise in vivo evaluation of cellular metabolism. In particular, biosensors that can couple intercellular cues with downstream signaling responses are currently attracting major attention within health science and biotechnology. Still, there is a need for bioprospecting and engineering of more biosensors to enable real-time monitoring of specific cellular states and controlling downstream actuation. In this study, we report the engineering and application of a transcription factor-based NADPH/NADP(+) redox biosensor in the budding yeast Saccharomyces cerevisiae. Using the biosensor, we are able to monitor the cause of oxidative stress by chemical induction, and changes in NADPH/NADP(+) ratios caused by genetic manipulations. Because of the regulatory potential of the biosensor, we also show that the biosensor can actuate upon NADPH deficiency by activation of NADPH regeneration. Finally, we couple the biosensor with an expression of dosage-sensitive genes (DSGs) and thereby create a novel tunable sensor-selector useful for synthetic selection of cells with higher NADPH/NADP(+) ratios from mixed cell populations. We show that the combination of exploitation and rational engineering of native signaling components is applicable for diagnosis, regulation, and selection of cellular redox states.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据