4.6 Article

Principal Component-Based Semi-Supervised Extreme Learning Machine for Soft Sensing

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TASE.2023.3290352

关键词

Soft sensing; semi-supervised learning; extreme learning machine; principal component; regularization

向作者/读者索取更多资源

This paper proposes a principal component-based semi-supervised extreme learning machine (PCSELM) model, which can simultaneously extract latent features and learn the nonlinear input-output relationship, thus efficiently utilizing unlabeled samples for feature representation and model accuracy improvement.
Soft sensing technique has been extensively used to predict key quality variables in industrial systems. However, due to the difficulty of quality variable acquisition, only limited labeled data samples are available, and a large number of unlabeled ones are discarded. This raises a big challenge to build a high-quality soft sensor model. In order to furthest exploit information contained in both the labeled and unlabeled data, this paper proposes a principal component-based semi-supervised extreme learning machine (referred to as PCSELM) model. Through this model, extracting latent features and learning nonlinear input-output relationship can be simultaneously performed. In this way, unlabeled samples are utilized efficiently for feature representation and model accuracy improvement. Moreover, mixed regularizations are employed to work in conjunction with the PCSELM to obtain high generality and flexibility. We also derive an efficient parameter learning algorithm with theoretically guaranteed convergence. Comprehensive experiments are conducted via an industrial process. Comparison results illustrate that the proposed PCSELM outperforms other representative semi-supervised algorithms.Note to Practitioners-Industrial processes in general incorporate unlabeled samples which are ubiquitous in real world applications. The focus of this paper is to develop a semi-supervised soft sensor model (PCSELM) that is capable to learn the nonlinear features and regression relationship efficiently with both the labeled and unlabeled samples. The proposed model can automatically implement the feature representation and the input-output relationship description. In addition, we introduce mixed norms for the model objective function to improve the final prediction performance and generalization. A feasible model optimization technique with proved convergence is also derived. Experimental results based on a real industrial dataset manifest that PCSELM achieves better prediction accuracy than its peers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据