4.6 Article

Tunable electroactive oligothiophene-naphthalimide semiconductors via end-capped engineering: cumulative effects beyond the linker

期刊

JOURNAL OF MATERIALS CHEMISTRY C
卷 -, 期 -, 页码 -

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3tc02099a

关键词

-

向作者/读者索取更多资源

In order to obtain novel functional semiconducting materials for use in organic electronics, combining strong donor moieties with electron-withdrawing units is a useful strategy. However, a precise design of new functional materials is still challenging. Therefore, in this work, we present a new synthetic approach for achieving redox amphoteric organic semiconductors by tuning their opto-electrochemical properties via rational chemical modifications.
Aiming to obtain novel functional semiconducting materials for their use in organic electronics, the combination of strong donor moieties with electron-withdrawing units is one of the most useful strategies to obtain ambipolar semiconductors with tunable properties. Nowadays most of the efforts headed to efficient materials are based on small changes in the alkyl pendant chains or by replacing single atoms. However, a precise design of new functional materials is still challenging. For this reason, in this work we present a new synthetic approach for achieving redox amphoteric organic semiconductors by tuning their opto-electrochemical properties via rational chemical modifications. All these materials present low-lying LUMO levels, lower than -4.00 eV with broad absorption up to 800 nm in the UV-Vis-NIR spectra. In addition, they have been characterized by DFT, absorption and Raman vibrational spectroscopies, while their charge stabilization abilities are studied by means of spectroelectrochemical techniques. The results point out to a quite complex electronic scenario that goes beyond the expected cumulative effects of the independent molecular units constituting the final molecular assembly.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据