4.7 Article

Predicting miRNA-disease associations based on 1ncRNA-miRNA interactions and graph convolution networks

期刊

BRIEFINGS IN BIOINFORMATICS
卷 24, 期 1, 页码 -

出版社

OXFORD UNIV PRESS
DOI: 10.1093/bibibbac495

关键词

miRNA-disease associations; lncRNA-miRNA interactions; graph convolution networks; multichannel attention mechanism; CNN combiner

向作者/读者索取更多资源

Increasing studies have shown that miRNAs play a critical role in human complex diseases. Predicting miRNA-disease associations is important for disease prevention, diagnosis, and treatment. This study proposes a deep learning-based method, MAGCN, which predicts potential MDAs without using similarity measurements. The results demonstrate the effectiveness of our method in detecting new disease-related miRNAs.
Increasing studies have proved that microRNAs (miRNAs) are critical biomarkers in the development of human complex diseases. Identifying disease -related miRNAs is beneficial to disease prevention, diagnosis and remedy. Based on the assumption that similar miRNAs tend to associate with similar diseases, various computational methods have been developed to predict novel miRNA-disease associations (MDAs). However, selecting proper features for similarity calculation is a challenging task because of data deficiencies in biomedical science. In this study, we propose a deep learning -based computational method named MAGCN to predict potential MDAs without using any similarity measurements. Our method predicts novel MDAs based on known 1ncRNA-miRNA interactions via graph convolution networks with multichannel attention mechanism and convolutional neural network combiner. Extensive experiments show that the average area under the receiver operating characteristic values obtained by our method under 2 -fold, 5 -fold and 10 fold cross -validations are 0.8994, 0.9032 and 0.9044, respectively. When compared with five state-of-the-art methods, MAGCN shows improvement in terms of prediction accuracy. In addition, we conduct case studies on three diseases to discover their related miRNAs, and find that all the top 50 predictions for all the three diseases have been supported by established databases. The comprehensive results demonstrate that our method is a reliable tool in detecting new disease -related miRNAs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据