4.7 Article

Comparing the standardized amino acid digestibility of an alternative protein source with commercially available protein-based ingredients using the precision-fed cecectomized rooster assay

期刊

JOURNAL OF ANIMAL SCIENCE
卷 101, 期 -, 页码 -

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/jas/skad236

关键词

canine nutrition; feline nutrition; microbial protein; nutrient digestion; pet food; single-cell protein

向作者/读者索取更多资源

The aim of this experiment was to compare the amino acid digestibilities and protein quality of a novel microbial protein with other animal, plant, and insect-based ingredients. The results showed that the microbial protein had high amino acid digestibilities and could serve as a high-quality protein source for pet foods.
Lay Summary Single-cell-based proteins are of interest for use in pet foods, but little testing has been done. The objective of this experiment was to compare the amino acid (AA) digestibilities and protein quality of a novel microbial protein (MP) (FeedKind) with chicken meal (CM), corn gluten meal (CGM), pea protein (PP), and black soldier fly larvae ingredients using the precision-fed cecectomized rooster assay. Cecectomized roosters were tube-fed the test ingredients and excreta were collected. All reactive lysine:total lysine ratios, an indicator of heat damage, were higher than 0.9, except for CM. Digestibility of indispensable and dispensable AA were >85% and >80% for MP, respectively, with indispensable AA digestibilities being >80% for all other ingredients. In general, CGM had the highest, while CM had the lowest AA digestibilities. Lysine and tryptophan were exceptions, being highest for MP. Threonine and valine digestibilities were also high for MP. Digestible indispensable AA score-like values identified limiting AA of each ingredient. Limiting AA was most commonly methionine, threonine, and tryptophan for dogs and lysine and methionine for cats. Our data suggest that the MP tested has high AA digestibilities and is a high-quality protein source that may be useful in pet foods. A precision-fed cecectomized rooster assay was used to test the amino acid digestibilities and protein quality of a variety of protein sources, including a novel microbial protein. Our data suggest, for the first time, that the microbial protein tested has high amino acid digestibilities and is a high-quality protein source that may be useful in pet foods. Using single-cell-based proteins in pet foods is of interest, but little testing has been done. Therefore, our objective was to determine the amino acid (AA) digestibilities, assess protein quality of a novel microbial protein (MP) (FeedKind), and compare it with other protein-based ingredients using the precision-fed cecectomized rooster assay. Test ingredients included: MP, chicken meal (CM), corn gluten meal (CGM), pea protein (PP), and black soldier fly larvae. Thirty cecectomized roosters (n = 6/ingredient) were randomly assigned to test ingredients. After 24 h of feed withdrawal, roosters were tube-fed 15 g test ingredient and 15 g corn, and then excreta were collected for 48 h. Endogenous AA corrections were made using additional roosters. Digestible indispensable AA score (DIAAS)-like values were calculated to determine protein quality according to Association of American Feed Control Officials (AAFCO), The European Pet Food Industry Federation, and National Research Council reference values for growing and adult dogs and cats. Data were analyzed using the Mixed Models procedure of SAS 9.4, with P & LE; 0.05 being significant. All reactive lysine:total lysine ratios, an indicator of heat damage, were higher than 0.9, except for CM (0.86). Digestibility of indispensable and dispensable AA were >85% and >80% for MP, respectively, with indispensable AA digestibilities being >80% for all other ingredients. In general, CGM had the highest, while CM had the lowest AA digestibilities. Two exceptions were lysine and tryptophan. Lysine digestibility for MP was higher than that of all other ingredients, while tryptophan digestibility for MP was higher than that of CM, CGM, and PP. Threonine digestibility was highest for CGM and MP. Valine digestibility was highest for CGM, PP, and MP. DIAAS-like calculations identified limiting AA of each ingredient and depended on the reference used and life stage and species of animal. Using AAFCO guidelines, all DIAAS-like values for MP were >100 suggesting that it could be used as the sole source of protein in adult dog and cat diets; only methionine had DIAAS-like values <100 for growing kittens. For dogs, limiting AA was most commonly methionine, threonine, and tryptophan in the other protein sources. For cats, limiting AA was most commonly lysine and methionine. Lysine was severely limited in CGM across all life stages considered. Further research in dogs and cats is necessary, but our data suggest that the MP tested has high AA digestibilities and is a high-quality protein source that may be useful in pet foods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据