4.7 Article

Data-driven modelling of the multiaxial yield behaviour of nanoporous metals

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijmecsci.2023.108601

关键词

Yield condition; Anisotropic material; Porous material; Finite elements; Machine learning

向作者/读者索取更多资源

By using finite element simulations, the elastic behavior and yield surfaces of nanoporous metals were studied. It was found that using data-driven and hybrid artificial neural networks could provide the most accurate prediction results.
Nanoporous metals, built out of complex ligament networks, can be produced with an additional level of hierarchy. The resulting complexity of the structure makes modelling of the mechanical behaviour computationally expensive and time consuming. In addition, multiaxial stresses occur in the higher hierarchy ligaments. Therefore, knowledge of the multiaxial material behaviour, including the 6D yield surface, is required. Surrogate models, predicting the mechanical behaviour of the lower level of hierarchy, represented by finite element beam models, are a promising approach to overcome such challenges, when existing analytical models are not able to describe the material behaviour. Therefore, as a first step, we studied the elastic behaviour and the yield surfaces of representative volume elements with idealised diamond and Kelvin structure in finite element simulations. The yield surfaces showed pronounced anisotropy and could not be described by the Deshpande-Fleck model for isotropic solid foams. Instead, we used data-driven and hybrid artificial neural networks, as well as data-driven support vector machines and compared them regarding their potential for the prediction of yield surfaces. All considered methods were well suited and resulted in relative errors < 4.5 %. Support vector machines showed the best generalisation and accuracy in 6D stress space and are suitable for extrapolation outside the range of training data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据