4.2 Article

Competition of density waves and superconductivity in twisted tungsten diselenide

期刊

PHYSICAL REVIEW RESEARCH
卷 5, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.5.L012034

关键词

-

向作者/读者索取更多资源

Evidence of correlated insulating and superconducting phases in tWSe2 was reported. A functional renormalization group approach was used to investigate their origin and interplay. The phase diagram as a function of filling and perpendicular electric field was mapped, revealing mixed-parity superconducting order parameters with s/f-wave and topological d/p-wave symmetry.
Evidence for correlated insulating and superconducting phases around regions of high density of states was reported in the strongly spin-orbit coupled van der Waals material twisted tungsten diselenide (tWSe2). We investigate their origin and interplay by using a functional renormalization group approach that allows one to describe superconducting and spin/charge instabilities in an unbiased way. We map out the phase diagram as a function of filling and perpendicular electric field, and find that the moire Hubbard model for tWSe2 features mixed-parity superconducting order parameters with s/ f -wave and topological d/p-wave symmetry next to (incommensurate) density-wave states. Our work systematically characterizes competing interaction-driven phases in tWSe2 beyond mean-field approximations and provides guidance for experimental measurements by outlining the fingerprint of correlated states in interacting susceptibilities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据