4.7 Article

dPABBs: A Novel in silico Approach for Predicting and Designing Anti-biofilm Peptides

期刊

SCIENTIFIC REPORTS
卷 6, 期 -, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/srep21839

关键词

-

资金

  1. CSIR
  2. UGC
  3. TATA CSIR OSDD Fellowship program

向作者/读者索取更多资源

Increasingly, biofilms are being recognised for their causative role in persistent infections (like cystic fibrosis, otitis media, diabetic foot ulcers) and nosocomial diseases (biofilm-infected vascular catheters, implants and prosthetics). Given the clinical relevance of biofilms and their recalcitrance to conventional antibiotics, it is imperative that alternative therapeutics are proactively sought. We have developed dPABBs, a web server that facilitates the prediction and design of anti-biofilm peptides. The six SVM and Weka models implemented on dPABBs were observed to identify anti-biofilm peptides on the basis of their whole amino acid composition, selected residue features and the positional preference of the residues (maximum accuracy, sensitivity, specificity and MCC of 95.24%, 92.50%, 97.73% and 0.91, respectively, on the training datasets). On the N-terminus, it was seen that either of the cationic polar residues, R and K, is present at all five positions in case of the anti-biofilm peptides, whereas in the QS peptides, the uncharged polar residue S is preponderant at the first (also anionic polar residues D, E), third and fifth positions. Positive predictions were also obtained for 29 FDA-approved peptide drugs and ten antimicrobial peptides in clinical development, indicating at their possible repurposing for anti-biofilm therapy. dPABBs is freely accessible on: http://ab-openlab.csir.res.in/abp/antibiofilm/.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据