4.7 Article

Unconventional Magnetism and Band Gap Formation in LiFePO4: Consequence of Polyanion Induced Non-planarity

期刊

SCIENTIFIC REPORTS
卷 6, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/srep19573

关键词

-

资金

  1. NISSAN RESEARCH PROGRAM [PHY1314289NRSPBIRA]

向作者/读者索取更多资源

Oxygen plays a critical role in strongly correlated transition metal oxides as crystal field effect is one of the key factors that determine the degree of localization of the valence d/f states. Based on the localization, a set of conventional mechanisms such as Mott-Hubbard, Charge-transfer and Slater were formulated to explain the antiferromagnetic and insulating (AFI) phenomena in many of these correlated systems. From the case study on LiFePO4, through density-functional calculations, we demonstrate that none of these mechanisms are strictly applicable to explain the AFI behavior when the transition metal oxides have polyanions such as (PO4)(3-). The symmetry-lowering of the metal-oxygen complex, to stabilize the polyanion, creates an asymmetric crystal field for d/f states. In LiFePO4 this field creates completely non-degenerate Fe-d states which, with negligible p-d and d-d covalent interactions, become atomically localized to ensure a gap at the Fermi level. Due to large exchange splitting, high spin state is favored and an antiferromagnetic configuration is stabilized. For the prototype LiFePO4, independent electron approximation is good enough to obtain the AFI ground state. Inclusion of additional correlation measures like Hubbard U simply amplifies the gap and therefore LiFePO4 can be preferably called as weakly coupled Mott insulator.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据