4.7 Article

Exoskeleton-Assisted Sit-to-Stand Training Improves Lower-Limb Function Through Modifications of Muscle Synergies in Subacute Stroke Survivors

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNSRE.2023.3297737

关键词

& nbsp;Muscle synergy; exoskeleton; lower limb; sit-to-stand; stroke rehabilitation

向作者/读者索取更多资源

Abnormal muscle synergies during sit-to-stand (STS) transitions have been observed post-stroke. Exoskeleton-assisted STS training intervention can partially restore normal muscle synergies and improve clinical scores in stroke survivors.
Abnormal muscle synergies during sit-to-stand (STS) transitions have been observed post-stroke, which are associated with deteriorated lower-limb function and mobility. Although exoskeletons have been used in restoring lower-limb function, their effects on muscle synergies and lower-limb motor recovery remain unclear. Here, we characterized normal muscle synergy patterns during STS activity in ten healthy adults as a reference, comparing with pathological muscle synergy patterns in ten participants with subacute stroke. Moreover, we assessed the effects of a 3-week exoskeleton-assisted STS training intervention on muscle synergies and clinical scores in seven stroke survivors. We also investigated correlations between neuromuscular complexity of muscle synergies and clinical scores. Our results showed that the STS task involved three motor modules representing distinct biomechanical functions among healthy subjects. In contrast, stroke participants showed 3 abnormal modules for the paretic leg and 2 modules for the non-paretic leg. After the intervention, muscle synergies partially shifted towards the normal pattern observed in healthy subjects on the paretic side. On the non-paretic side, the synergy modules increased to three and neuromuscular coordination improved. Furthermore, the significant intervention-induced increases in Fugl-Meyer Assessment of Lower Extremity and Berg Balance Scale scores were associated with improved muscle synergies on the non-paretic side. These results indicate that the paretic side demonstrates abnormal changes in muscle synergies post-stroke, while the non-paretic side can synergistically adapt to post-stroke biomechanical deviations. Our data show that exoskeleton-based training improved lower-limb function post-stroke by inducing modifications in muscle synergies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据