4.7 Article

Chloroplast-granum inspired phase change capsules accelerate energy storage of packed-bed thermal energy storage system

期刊

ENERGY
卷 284, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2023.128563

关键词

Thermal energy storage; Packed-bed; Biomimetic; Chloroplast-granum

向作者/读者索取更多资源

This study proposes bionic phase change material (PCM) capsules that mimic the internal and external structure of chloroplast-granum, demonstrating significantly faster heat storage compared to sphere type capsules. The improvement is attributed to the bionic folded shape and inner membrane structure, which enhance heat convection and facilitate heat conduction. Furthermore, the capsules are filled into the packed-bed in a staggered arrangement, increasing heat transfer area and enhancing disturbance flow. As a result, the melting time is reduced by 33.2% and average exergy storage rate and efficiency are enhanced by 48.4% and 8.3%, respectively.
Packed-bed thermal energy storage (PBTES) systems utilizing phase change capsules have found extensive applications in thermal energy harvesting and management to alleviate energy supply-demand imbalances. Nevertheless, the sluggish thermal charging rate of phase change materials (PCMs) capsules remains a significant impediment to the rapid advancement of PBTES. Here, bionic PCMs capsules are proposed by mimicking the internal and external structure of chloroplast-granum. The heat transfer and flow characteristics of the bionic PCMs capsules in the packed-bed are analyzed by experiments and numerical simulations. The results illustrate that the chloroplast-fin type PCMs capsule exhibits significantly faster heat storage compared to the sphere type PCMs capsule. This improvement is attributed to the bionic folded shape and inner membrane structure, which generate multiple local vortices to enhance heat convection, and shorten the heat transfer distance between the capsule wall and center PCMs to facilitate heat conduction. The PCMs capsules are further filled into the packedbed in a staggered arrangement, resulting in increased heat transfer area and enhanced disturbance flow as compared to an aligned arrangement. Consequently, the melting time of the packed-bed filled with chloroplastfin type capsules is reduced by 33.2%, meanwhile the average exergy storage rate and exergy efficiency are enhanced by 48.4% and 8.3%, respectively, compared to the packed-bed filled with sphere type capsules. This research offers a novel approach for designing high-performance PBTES system utilizing bionic capsules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据