4.7 Article

The Wheat GT Factor TaGT2L1D Negatively Regulates Drought Tolerance and Plant Development

期刊

SCIENTIFIC REPORTS
卷 6, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/srep27042

关键词

-

资金

  1. National Transgenic Key Project of MOA [2014ZX08002-002]
  2. Strategic Priority Research Program of the Chinese Academy of Sciences [XDA08010209]
  3. key project of National Science and Technology Pillar Program of China [2013BAD05B02]
  4. National Natural Science Foundation of China [31571612, 31100191]

向作者/读者索取更多资源

GT factors are trihelix transcription factors that specifically regulate plant development and stress responses. Recently, several GT factors have been characterized in different plant species; however, little is known about the role of GT factors in wheat. Here, we show that TaGT2L1A, TaGT2L1B, and TaGT2L1D are highly homologous in hexaploid wheat, and are localized to wheat chromosomes 2A, 2B, and 2D, respectively. These TaGT2L1 genes encode proteins containing two SANT domains and one central helix. All three homologs were ubiquitously expressed during wheat development and were responsive to osmotic stress. Functional analyses demonstrated that TaGT2L1D acts as a transcriptional repressor; it was able to suppress the expression of AtSDD1 in Arabidopsis by binding directly to the GT3 box in its promoter that negatively regulates drought tolerance. TaGT2L1D overexpression markedly increased the number of stomata and reduced drought tolerance in gtl1-3 plants. Notably, ectopic expression of TaGT2L1D also affected floral organ development and overall plant growth. These results demonstrate that TaGT2L1 is an ortholog of AtGTL1, and that it plays an evolutionarily conserved role in drought resistance by fine tuning stomatal density in wheat. Our data also highlight the role of TaGT2L1 in plant growth and development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据