4.7 Article

Specific regulation of PRMT1 expression by PIAS1 and RKIP in BEAS-2B epithelia cells and HFL-1 fibroblasts in lung inflammation

期刊

SCIENTIFIC REPORTS
卷 6, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/srep21810

关键词

-

向作者/读者索取更多资源

Protein arginine methyltransferase 1 (PRMT1) catalyzes methylation of histones and other cellular proteins, and thus regulates gene transcription and protein activity. In antigen-induced pulmonary inflammation (AIPI) PRMT1 was up-regulated in the epithelium, while in chronic AIPI, increased PRMT1 shifted to fibroblasts. In this study we investigated the cell type specific regulatory mechanism of PRMT1. Epithelial cells and fibroblasts were stimulated with IL-4 or IL-1 beta. Gene and protein expression were determined by RT-qPCR, immunohistochemistry staining and Western blotting. Signaling pathway inhibitors, siRNAs and shRNA were used to determine the regulatory mechanism of PRMT1. The results showed that IL-4 up-regulated PRMT1 through STAT6 signaling in epithelial cells, while IL-1 beta regulated PRMT1 through NF-kappa B in fibroblasts. The NF-kB inhibitor protein RKIP was highly expressed in epithelial cells and blocked IL-1 beta induced PRMT1 up-regulation; while the STAT6 inhibitor protein PIAS1 was expressed in fibroblasts and suppressed IL-4 induced PRMT1 expression. Furthermore, IL-4 stimulated epithelial cells to release IL-1 beta which up-regulated PRMT1 expression in fibroblasts. In conclusion, the inhibitor proteins RKIP and PIAS1 regulated the cell type and signaling specific expression of PRMT1. Thus PRMT1 expression in structural lung cells in asthma can be considered as potential target for new therapeutic intervention.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据