4.6 Article

Quantum machine learning of graph-structured data

期刊

PHYSICAL REVIEW A
卷 108, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.108.012410

关键词

-

向作者/读者索取更多资源

In this paper, an approach is developed to improve learning efficiency by leveraging the graph structure of the quantum source for an arbitrary quantum neural network (QNN) ansatz. A self-supervised objective is devised and optimized to capture the information-theoretic closeness of quantum states during QNN training. Numerical simulations demonstrate that this approach enhances learning efficiency and generalization behavior of the base QNN. Moreover, scalable quantum implementations of the learning procedure described in this paper are likely feasible on the next generation of quantum computing devices.
Graph structures are ubiquitous throughout the natural sciences. Here we develop an approach that exploits the quantum source's graph structure to improve learning via an arbitrary quantum neural network (QNN) ansatz. In particular, we devise and optimize a self-supervised objective to capture the information-theoretic closeness of the quantum states in the training of a QNN. Numerical simulations show that our approach improves the learning efficiency and the generalization behavior of the base QNN. On a practical note, scalable quantum implementations of the learning procedure described in this paper are likely feasible on the next generation of quantum computing devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据