4.7 Article

Development of chitosan-based antibacterial and antioxidant bioactive film incorporated with carvacrol-loaded modified halloysite nanotube

期刊

FOOD HYDROCOLLOIDS
卷 145, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.foodhyd.2023.109102

关键词

Chitosan; Halloysite nanotube; Antibacterial and antioxidant; Bioactive packaging film; Food preservation

向作者/读者索取更多资源

A chitosan-based bioactive packaging film with good antibacterial and antioxidant activities was developed by loading modified halloysite nanotubes (AHNT) with carvacrol (AHNT-Car) as a nanofiller. The addition of AHNT-Car improved the mechanical and barrier properties of the film, and it also exhibited sustained antioxidant and antibacterial properties, effectively slowing down the spoilage of pork during storage.
The chitosan (CS)-based bioactive packaging film with good antibacterial and antioxidant activities was developed using AHNT (modified halloysite nanotube) loaded with carvacrol (AHNT-Car) as the nanofiller. The zeta potential, Fourier transform infrared, and rheology analysis indicated that hydrogen bonding and electrostatic interactions were formed between AHNT-Car and CS film substrate, and scanning electron microscope images exhibited that the cross-sections of the bioactive film were denser. The mechanical and barrier properties (water vapor, oxygen, and light barrier properties) of the bioactive film were enhanced by adding AHNT-Car due to the hydrogen bonding, electrostatic interactions, and compact structure. Specifically, when the additional amount of AHNT-Car was 10 wt%, the film's tensile, oxygen barrier, and water vapor barrier properties were improved by 49.7%, 36.78%, and 11.92%, respectively. Moreover, compared to CS-Car film (adding Car into the CS film directly), the CS-10% film (AHNT-Car added at 10 wt%) had a slow-release effect on Car and could effectively protect the Car from external high temperature and UV light. In addition, the prepared bioactive film had sustained antioxidant and antibacterial properties and could significantly slow down the spoilage of pork during storage, proving the promising application of the bioactive film as food packaging.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据