4.7 Article

Cation/Anion Substitution in Cu2ZnSnS4 for Improved Photovoltaic Performance

期刊

SCIENTIFIC REPORTS
卷 6, 期 -, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/srep35369

关键词

-

资金

  1. NCPRE, IIT Bombay through MNRE, Government of India

向作者/读者索取更多资源

Cations and anions are replaced with Fe, Mn, and Se in CZTS in order to control the formations of the secondary phase, the band gap, and the micro structure of Cu2ZnSnS4. We demonstrate a simplified synthesis strategy for a range of quaternary chalcogenide nanoparticles such as Cu2ZnSnS4 (CZTS), Cu2FeSnS4 (CFTS), Cu2MnSnS4 (CMTS), Cu2ZnSnSe4 (CZTSe), and Cu2ZnSn(S0.5Se0.5)(4) (CZTSSe) by thermolysis of metal chloride precursors using long chain amine molecules. It is observed that the crystal structure, band gap and micro structure of the CZTS thin films are affected by the substitution of anion/cations. Moreover, secondary phases are not observed and grain sizes are enhanced significantly with selenium doping (grain size similar to 1 mu m). The earth-abundant Cu2MSnS4/Se-4 (M = Zn, Mn and Fe) nanoparticles have band gaps in the range of 1.04-1.51 eV with high optical-absorption coefficients (similar to 10(4) cm(-1)) in the visible region. The power conversion efficiency of a CZTS solar cell is enhanced significantly, from 0.4% to 7.4% with selenium doping, within an active area of 1.1 +/- 0.1 cm(2). The observed changes in the device performance parameters might be ascribed to the variation of optical band gap and microstructure of the thin films. The performance of the device is at par with sputtered fabricated films, at similar scales.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据