3.8 Article

Pore formation driven by particle impact in laser powder-blown directed energy deposition

期刊

PNAS NEXUS
卷 2, 期 6, 页码 -

出版社

OXFORD UNIV PRESS
DOI: 10.1093/pnasnexus/pgad178

关键词

additive manufacturing; pore formation; in situ imaging

向作者/读者索取更多资源

The use of metal additive manufacturing (AM) components is currently limited in industries due to process defects resulting in shorter fatigue life, potential catastrophic failure, and lower strength. Scientists have started analyzing the conditions and mechanisms of these defects to improve reliability and structural integrity of these highly customized parts.
Process defects currently limit the use of metal additive manufacturing (AM) components in industries due to shorter fatigue life, potential for catastrophic failure, and lower strength. Conditions under which these defects form, and their mechanisms, are starting to be analyzed to improve reliability and structural integrity of these highly customized parts. We use in situ, high-speed X-ray imaging in conjunction with a high throughput laser, powder-blown directed energy deposition setup to observe powder particle impact behavior within the melt pool. Through fundamental observations of the stochastic, violent powder delivery in powder-blown DED, we uncover a unique pore formation mechanism. We find that a pore can form due to air-cushioning, where vapor from the carrier gas or environment is entrapped between the solid powder particle surface and liquid melt pool surface. A critical time constant is established for the mechanism, and X-ray computed tomography is used to further analyze and categorize the new type of air-cushioning pores. It is shown that the air-cushioning mechanism can occur under multiple laser processing conditions, and we show that air-cushioning pores are more likely to be formed when powder particles are larger than 70 mu m. By quantifying the effect of powder particle impact, we identify new avenues for development of high-quality laser, powder-blown DED products. Furthermore, we deepen knowledge on defect formation in metal additive manufacturing, which is being increasingly utilized in high performance situations such as aerospace, automotive, and biomedical industries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据