4.7 Article

A micro-macro coupled permeability model for gas transport in coalbed methane reservoirs

期刊

ENERGY
卷 284, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2023.128604

关键词

Coalbed methane reservoir; Cross-scale; Permeability; Micro-fracture; Capillary bundle

向作者/读者索取更多资源

It is important to study the coupling mechanism of microscale and macroscale permeabilities in coalbed methane (CBM) reservoirs for scientific and engineering purposes. This paper reveals the characteristics of the pore-fracture system of coal matrix and establishes a coupled permeability model to clarify the coal rank control mechanism on the transformation of micro-macro permeabilities. Based on a microscale gravitational field model, the influence mechanism of coal rank-pressure coupling on the slippage/diffusion/jump of adsorbed gas in the surface control field is also clarified.
It is of great scientific and engineering significances to reveal the coupling mechanism of microscale and macroscale permeabilities in coalbed methane (CBM) reservoirs. In this paper, firstly, the characteristics of the pore-fracture system of coal matrix, such as gas content, permeability, connectivity, geometric size difference, and direction of micro-fracture development, are revealed. Secondly, a coupled permeability model is established, and the coal rank control mechanism on the transformation of microscale and macrosclae permeabilities is clarified. Thirdly, based on the microscale gravitational field model, the coal rank-pressure coupling influence mechanism on slippage/diffusion/jump of adsorbed gas in the surface control field is clarified. Results show that: (a) under a certain temperature, the microscale permeability and macroscale permeability of coal matrix have a statistical correlation, and the degree of coal metamorphism is the only variable controlling the transformation of micro-macro permeabilities. (b) With the increase of coal rank from 0.5% to 3.5%, the conversion coefficient of bulk gas permeability decreases by 15 orders of magnitude. (c) With the increase of coal metamorphism, the porosity and the density of oxygen-containing functional groups decrease, leading to the proportion of the area of adsorbed water film decreases at first and then increases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据