4.6 Article

Nonlinear shear characteristics of frozen loess-concrete interface

期刊

PLOS ONE
卷 18, 期 8, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0290025

关键词

-

向作者/读者索取更多资源

In this study, a large precast pile-soil shear experimental device is used to investigate the characteristics of the concrete-loess interface under different freezing temperatures and moisture contents. The shear strength parameters and the shear mechanism of the interface are analyzed. A stress-strain constitutive equation and a shear strength criterion considering temperature and moisture content are proposed. The experimental results demonstrate the three stages of shear failure mechanism and the influence of temperature, moisture content, and normal stress on the interface shear strength.
Under the different temperature environment, the precast pile-soil interface characteristics has an important impact on the safety and long-term stability for pile foundation. A large precast pile-soil shear experimental device is used to carry out the direct shear test of concrete-loess interface with different moisture contents under different freezing temperatures. The variation laws of shear strength parameters are revealed with influencing factors, and the shear mechanism of interface is discussed. The stress-strain constitutive equation of interface is proposed, and the shear strength criterion is established with considering the effects of temperature and moisture content on cohesion and internal friction angle. The results show the curve of shear stress and shear displacement can be divided into three stages: elastic deformation stage, plastic deformation stage and sliding failure stage, which macroscopically reflects the shear failure mechanism of the frozen soil-concrete interface. The shear strength of the interface is affected by the test temperature, sample moisture content and normal stress. The lower the test temperature, the greater the shear strength of the interface; With the increase of normal stress, the shear strength of interface increases; With the increase of moisture content, the shear strength of the interface increases and then decreases. The relationship of shear stress and shear displacement of frozen soil-concrete interface can be well described by the piecewise combination of hyperbolic function and linear function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据