4.6 Article

Cu@CuO promoted g-C3N4/MCM-41: an efficient photocatalyst with tunable valence transition for visible light induced hydrogen generation

期刊

RSC ADVANCES
卷 6, 期 113, 页码 112602-112613

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ra24358d

关键词

-

向作者/读者索取更多资源

A series of ternary Cu@CuO-g-C3N4/MCM-41 photocatalysts have been synthesized by varying the percentage of Cu using simple impregnation and co-condensation methods. The physico-chemical characterization of all the samples was determined using XRD, FTIR, UV-Vis DRS, PL, N-2 ads-des studies, SEM and XPS HRTEM, EDAX, EIS and MS. The structural advantages of MCM-41, allow the uniform distribution of g-C3N4 and coexistence of Cu2+ along with Cu-0 without using a reducing agent. The presence of g-C3N4 helps to shift the Fermi level of CuO towards more negative values due to accumulation of photogenerated electrons on the surface. It favours charge separation by creating a Schottky barrier at the junction. The 4 wt% Cu loaded over g-C3N4/MCM-41 exhibits a maximum 750 mmol 2 h (1) of H-2 evolution under visible light irradiation with an apparent energy conversion efficiency of 24.8%. The enhancement in catalytic activity has been explained on the basis of synergism between g-C3N4 and Cu2+ and the SPR effect of Cu which also acts as a co-catalyst present on the surface of photocatalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据