4.6 Article

Hyaluronic acid/EDC/NHS-crosslinked green electrospun silk fibroin nanofibrous scaffolds for tissue engineering

期刊

RSC ADVANCES
卷 6, 期 102, 页码 99720-99728

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ra13713j

关键词

-

资金

  1. 111 project Biomedical Textile Materials Science and Technology, China [B07024]
  2. Innovation Foundation of Donghua University [EG2015067]
  3. Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry
  4. Natural Science Foundation of Shanghai [12ZR1400300]

向作者/读者索取更多资源

Regenerated silk fibroin (SF) from Bombyx mori was used widely in biomedical fields due to its excellent properties. In recent years, green electrospun SF nanofibers have attracted much attention from researchers due to their good biosafety and environmentally friendly nature. However, the mechanical properties of SF nanofibers are unsatisfactory, which greatly restricts the application of SF in tissue engineering. In this study, the tensile performance of the green electrospun SF nanofibers was significantly improved through a simple and eco-friendly process of hyaluronic acid (HA)/1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS)-crosslinking. Our data showed that the strain performance of the HA/EDC/NHS-crosslinked SF nanofibrous matrices was dramatically improved up to 120%, and was much better than that of the conventionally treated ones (ethanol soaking or fumigating). The appropriate HA/EDC/NHS-crosslinking time for SF nanofibrous matrices was 24 hours. The strain performance of the as-crosslinked SF nanofibers increased with an increase in HA concentration, with the optimal HA concentration being 0.3% (w/v). Fourier transform infrared spectroscopy analysis suggested that the HA/EDC/NHS-crosslinking process involves covalent reactions. The hydrophilicity of the SF nanofibrous matrices also increased with the addition of HA, which can be useful when trying to resist non-specific protein adsorption. In addition, the as-crosslinked SF nanofibrous matrices exhibited good cytocompatibility as shown by the cell viability data. Our work demonstrated that HA/EDC/NHS-crosslinking is a good choice for improving the tensile properties of the green electrospun SF nanofibers serving as skin tissue engineering scaffolds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据