4.6 Article

B3S2 monolayer as an anode material for Na/K-ion batteries: a first-principles study

期刊

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3cp01372

关键词

-

向作者/读者索取更多资源

Based on first-principles calculations, a new 2D B3S2 monolayer with high thermodynamic and dynamic stability is designed. The B3S2 monolayer shows a high cohesive energy, making experimental synthesis feasible, and exhibits a high theoretical capacity and low diffusion energy barrier as an anode material for sodium-ion batteries.
Two-dimensional (2D) materials used as anodes in metal-ion batteries have attracted increased attention due to their high specific surface area, abundant active sites and good electronic properties. Searching for 2D materials with high storage capacities and low diffusion energy barriers is one of the most effective ways to design novel anode materials. In this work, based on first-principles calculations, we design a new 2D B3S2 monolayer with high thermodynamic and dynamic stability. The obtained B3S2 monolayer has a high cohesive energy, ensuring the feasibility of experimental synthesis. These characteristics of the B3S2 monolayer prompt us to explore its application as an anode material. The B3S2 monolayer exhibits not only a metallic nature but also a low diffusion energy barrier (0.037 eV) and open-circuit voltage (0.09 V). More importantly, the B3S2 monolayer shows a very high theoretical capacity of 1658 mA h g(-1 )as an anode material for sodium-ion batteries, which is comparable to other similar or common 2D materials. All of these intriguing properties make the B3S2 monolayer a promising 2D anode material for sodium-ion batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据