4.6 Article

BiOX/BiOY (X, Y = F, Cl, Br, I) superlattices for visible light photocatalysis applications

期刊

RSC ADVANCES
卷 6, 期 94, 页码 91508-91516

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ra14915d

关键词

-

资金

  1. National Natural Science Foundation of China [11175146, 10904125]
  2. Natural Science Foundation of Chongqing [CSTC-2011BA6004, CSTC-2008BB4253]
  3. Fundamental Research Funds for the Central Universities [XDJK2012C038, XDJK2014D044, XDJK2015C045]

向作者/读者索取更多资源

The BiOX/BiOY (X, Y = F, Cl, Br, I, X not equal Y) systems have been investigated as possible visible light photocatalysts in contrast with the BiOX (X = F, Cl, Br, I) systems by using hybrid density functional calculations. All the BiOX/BiOY systems have indirect bandgaps, and all the bandgaps of BiOX/BiOY systems we considered are between the bandgaps of BiOX and BiOY systems. The calculated bandgaps for BiOF/BiOCl, BiOF/BiOBr, BiOF/BiOI, BiOCl/BiOBr, BiOCl/BiOI, and BiOBr/BiOI are respectively 3.86, 3.41, 2.74, 2.99, 2.30, and 2.23 eV. The maximum absorption wavelength increases in the order of BiOF, BiOF/BiOCl, BiOCl, BiOF/BiOBr, BiOCl/BiOBr, BiOBr, BiOF/BiOI, BiOCl/BiOI, BiOBr/BiOI, and BiOI. The conduction band edges for all the BiOX/BiOY systems originate from Bi 6p states, but the valance band edges are contributed by different electronic states. Besides, the relative positions of X p states and Y p states for BiOX/BiOY systems are different, which should be attributed to the different p orbital energies of X and Y atoms. Due to the conduction band maximum is lower than the hydrogen reduction potential, all the BiOX and BiOX/BiOY systems are thermodynamically unfavorable for hydrogen production. Meanwhile, owing to the suitable bandgaps and band edge positions, the BiOF/BiOI, BiOCl/BiOBr, BiOCl/BiOI, and BiOBr/BiOI superlattices are possible visible light photocatalysts for degradation of organic pollutants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据