4.8 Article

Reversal of methanation-oriented to RWGS-oriented Ni/SiO2 catalysts by the exsolution of Ni2+ confined in silicalite-1

期刊

GREEN CHEMISTRY
卷 -, 期 -, 页码 -

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3gc02399

关键词

-

向作者/读者索取更多资源

Investigation on catalytic hydrogenation of CO2 to CO via reverse water-gas shift (RWGS) was conducted using Ni/SiO2-based catalysts. The Ni/SiO2 catalyst derived from the reduction of silicalite-1-encapsulated, ligand-protected Ni2+ (Ni0.2@S-1-red) showed promising performance with high CO2 conversion rate, selectivity for CO, and space time yield of CO. The highly dispersed Ni0 and Ni2+ species, along with the presence of bridging oxygen of Ni-O-Si structure, contributed to the observed outcomes.
Investigation of catalytic hydrogenation of CO2 to CO via the reverse water-gas shift (RWGS) was undertaken using Ni/SiO2-based catalysts. Among the array of catalysts tested, the Ni/SiO2 catalyst derived from the reduction of silicalite-1-encapsulated, ligand-protected Ni2+ (Ni0.2@S-1-red) exhibited promising performance. This catalyst demonstrated a CO2 conversion rate approaching the equilibrium conversion of RWGS, a selectivity for CO exceeding 99%, and a high space time yield of CO (9.7 mol gNi(-1) h(-1)). The outcomes observed can be attributed to several factors, such as the highly dispersed Ni0 and Nid+ species, as well as the presence of bridging oxygen of the Ni-O-Si structure, on which CO2 can be adsorbed moderately. The moderately bonded CO2 on Ni-0.2@S-1-red allows for the efficient desorption of its reduced intermediate, i.e. *CO, resulting in the generation of gaseous CO at a rapid rate, consequently preventing its deep hydrogenation to CH4. Complementary Density Functional Theory (DFT) calculations were performed and revealed that CO molecules have poor adsorption and higher adsorption energy on the Ni@S-1 surface compared to the S-1 surface. This supports the rapid desorption of *CO and the observed high selectivity of CO. Moreover, the structure-activity correlation analysis further supports the claim of Ni0.2@S-1-red as a promising RWGS catalyst.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据