4.4 Article

An enhanced battery model using a hybrid genetic algorithm and particle swarm optimization

期刊

ELECTRICAL ENGINEERING
卷 -, 期 -, 页码 -

出版社

SPRINGER
DOI: 10.1007/s00202-023-01996

关键词

Battery modeling; Photovoltaic energy; Parameter identification; Meta-heuristic algorithms; Hybrid algorithms

向作者/读者索取更多资源

This paper proposes an enhanced battery model based on the Copetti model and utilizes a hybrid PSO-GA algorithm for parameter identification. The model is validated on several charging-discharging data and shows improved accuracy compared to other models in the literature.
Batteries are widely used for energy storage in stand-alone PV systems. However, both PV modules and batteries exhibit nonlinear behavior. Therefore, battery modeling is an essential step toward appropriate battery control and overall PV system management. Empirical models remain reliable for lead-acid batteries, especially the Copetti model, which describes many inner and outer battery phenomena, including temperature dependency. However, the parameters of the Copetti model require further adjustment to increase its ability to accurately represent battery behavior. Recently, metaheuristic algorithms have been employed for parameter identification, especially hybrid algorithms that combine the advantages of two or more algorithms. This paper proposes an enhanced battery model based on the Copetti model. The parameter identification of the enhanced model has been carried out using a novel hybrid PSO-GA algorithm (HPGA). The hybrid algorithm combines GA and PSO in a cascade configuration, with GA as the master algorithm. The HPGA algorithm has been compared with other algorithms, namely GA, PSO, ABC, COA, and a hybrid GWO-COA, to reveal its advantages and disadvantages. The NRMSE is used to evaluate algorithms in terms of tracking speed and efficiency. HPGA shows an improvement in tracking efficiency compared to GA and PSO. The proposed model is validated on several charging-discharging data and exhibits a 15% lower mean error compared to the Copetti model with original parameters. Additionally, the proposed model demonstrates a lower mean error of 0.16% compared to other models in the literature with a 0.36% mean error at least.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据