4.5 Article

Improved versions of crow search algorithm for solving global numerical optimization problems

期刊

APPLIED INTELLIGENCE
卷 -, 期 -, 页码 -

出版社

SPRINGER
DOI: 10.1007/s10489-023-04732

关键词

Crow search algorithm; Optimization; Meta-heuristics; Engineering problems

向作者/读者索取更多资源

In recent decades, research in Artificial Intelligence (AI) has developed various approaches and algorithms to solve complex optimization problems. This paper utilized and improved a meta-heuristic method called Crow Search Algorithm (CSA) to tackle numerical optimization problems, and evaluated its performance on benchmark functions and engineering design problems.
Over recent decades, research in Artificial Intelligence (AI) has developed a broad range of approaches and methods that can be utilized or adapted to address complex optimization problems. As real-world problems get increasingly complicated, this requires an effective optimization method. Various meta-heuristic algorithms have been developed and applied in the optimization domain. This paper used and ameliorated a promising meta-heuristic approach named Crow Search Algorithm (CSA) to address numerical optimization problems. Although CSA can efficiently optimize many problems, it needs more searchability and early convergence. Its positioning updating process was improved by supporting two adaptive parameters: flight length (fl) and awareness probability (AP) to tackle these curbs. This is to manage the exploration and exploitation conducts of CSA in the search space. This process takes advantage of the randomization of crows in CSA and the adoption of well-known growth functions. These functions were recognized as exponential, power, and S-shaped functions to develop three different improved versions of CSA, referred to as Exponential CSA (ECSA), Power CSA (PCSA), and S-shaped CSA (SCSA). In each of these variants, two different functions were used to amend the values of fl and AP. A new dominant parameter was added to the positioning updating process of these algorithms to enhance exploration and exploitation behaviors further. The reliability of the proposed algorithms was evaluated on 67 benchmark functions, and their performance was quantified using relevant assessment criteria. The functionality of these algorithms was illustrated by tackling four engineering design problems. A comparative study was made to explore the efficacy of the proposed algorithms over the standard one and other methods. Overall results showed that ECSA, PCSA, and SCSA have convincing merits with superior performance compared to the others.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据