4.7 Review

Synthesis and application of waste-based layered double hydroxide: A review

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 903, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2023.166245

关键词

Waste-based layered double hydroxide (LDH); Bauxite residue; Slag; Fly ash; Recycling; Environmental application

向作者/读者索取更多资源

The synthesis and application of waste-based layered double hydroxide (LDH) from 2010 to 2023 are summarized and discussed. Four types of waste-based LDH produced from red mud, slag, fly ash, and wastewater are identified, with co-precipitation being the most common synthesis method. The impurities in waste-based LDH can have both positive and negative effects on their performance.
The synthesis of layered double hydroxide (LDH) from industrial wastes is a sustainable approach to aid circular economy and hazardous material disposal. In this review, the researches on the synthesis and application of waste-based LDH from 2010 to 2023 are summarized and discussed. At present, there are mainly four types of waste-based LDH produced from red mud, slag, fly ash and wastewater, with co-precipitation being the most typical synthesis method. Red mud is used as the trivalent metal source supplemented by chemical reagents or other types of waste as divalent metal source to produce red mud-based LDH. Slag can act as the sole metal source providing both divalent and trivalent metal sources for slag-based LDH. Fly ash was used either as the trivalent metal source or both divalent and trivalent metal sources to produce fly ash-based LDH. Wastewaterbased LDH was typically synthesized by in-situ co-precipitation method to achieve the self-purification of wastewater. The impurities in waste-based LDH can act as a two-edged weapon. It may either hinder or promote the performance of waste-based LDH. The challenge in the synthesis of waste-based LDH lies in the efficient extraction of available metals. The future research prospects for waste-based LDH are suggested.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据