4.6 Article

Engineering electronic structures and optical properties of a MoSi2N4 monolayer via modulating surface hydrogen chemisorption

期刊

RSC ADVANCES
卷 13, 期 38, 页码 26475-26483

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3ra04428a

关键词

-

向作者/读者索取更多资源

This paper reports a theoretical investigation on hydrogenation as an alternative surface functionalization approach to effectively manipulate the electronic structures and optical properties of the MoSi2N4 monolayer material. The results showed that the hydrogenated material exhibited enhanced light absorption intensity in the visible light range. This work provides important theoretical guidance for the rational engineering of optical and optoelectronic properties of MoSi2N4 monolayer materials.
Recently, a MoSi2N4 monolayer has been successfully synthesized by a delicately designed chemical vapor deposition (CVD) method. It exhibits promising (opto)electronic properties due to a relatively narrow bandgap (similar to 1.94 eV), high electron/hole mobility, and excellent thermal/chemical stability. Currently, much effort is being devoted to further improving its properties through engineering defects or constructing nanocomposites (e.g., van der Waals heterostructures). Herein, we report a theoretical investigation on hydrogenation as an alternative surface functionalization approach to effectively manipulate its electronic structures and optical properties. The calculation results suggested that chemisorption of H atoms on the top of N atoms on MoSi2N4 was energetically most favored. Upon H chemisorption, the band gap values gradually decreased from 1.89 eV (for intrinsic MoSi2N4) to 0 eV (for MoSi2N4-16H) and 0.25 eV (for MoSi2N4-32H), respectively. The results of optical properties studies revealed that a noticeable enhancement in light absorption intensity could be realized in the visible light range after the surface hydrogenation process. Specifically, full-hydrogenated MoSi2N4 (MoSi2N4-32H) manifested a higher absorption coefficient than that of semi-hydrogenated MoSi2N4 (MoSi2N4-16H) in the visible light range. This work can provide theoretical guidance for rational engineering of optical and optoelectronic properties of MoSi2N4 monolayer materials via surface hydrogenation towards emerging applications in electronics, optoelectronics, photocatalysis, etc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据