4.7 Article

An exact closed-form explicit solution of free transverse vibration for non-uniform multi-cracked beam

期刊

JOURNAL OF SOUND AND VIBRATION
卷 570, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsv.2023.117986

关键词

Non-uniform beam; Multi-cracked beam; Exact closed-form solution; Transverse vibration

向作者/读者索取更多资源

Non-uniformity and damage are the main focus in studying vibrations of beam elements. An exact closed-form explicit solution for the transverse displacement of a nonuniform multi-cracked beam is introduced using generalized functions and distributional derivative concepts. By introducing non-dimensional parameters, the motion equation and its closed-form solution are obtained based on four fundamental functions. The impact of crack count, location, intensity, and boundary conditions on natural frequency and mode shape is evaluated through numerical study.
Non-uniformity and damage are the two primary subjects in studying the vibrations of the beam type elements. An exact closed-form explicit solution for the transverse displacement of a nonuniform multi-cracked beam with any type of boundary conditions is introduced. The generalized functions and the distributional derivative concepts are adopted. Four fundamental functions are introduced. These functions make the boundary conditions' process and compute the frequency equation more convenient. By introducing the non-dimensional parameters, the non dimensional motion equation of the damaged beam with an arbitrary count of cracks is derived, and its exact closed-form explicit solution is obtained based on the four introduced fundamental functions. The standard method of computing these functions is presented, and the closed-form of these functions is determined for eight cases like uniform and conical beams. The closed-form of the frequency equation and mode shapes of the non-uniform multi-cracked beam are derived for several boundary conditions. The influence of the count of cracks, their location and intensity, and the boundary conditions on the natural frequency and mode shape are assessed by running a numerical study. The first and second frequencies of a conical beam are computed to verify the obtained results by applying this newly presented closed-form solution and the Differential Quadrature Element Method. A good agreement is evident when the obtained results are compared.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据