4.6 Article

Impregnation vs. coprecipitation dispersion of Cr over TiO2 and ZrO2 used as active and stable nanocatalysts in oxidative dehydrogenation of ethane to ethylene by carbon dioxide

期刊

RSC ADVANCES
卷 6, 期 50, 页码 44195-44204

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ra05049b

关键词

-

资金

  1. Sahand University of Technology
  2. Iran Nanotechnology Initiative Council

向作者/读者索取更多资源

The catalytic performance of Cr/ZrO2 and Cr/TiO2 nanocatalysts, prepared by coprecipitation and impregnation methods, was examined in oxidative dehydrogenation of ethane to ethylene using CO2 as an oxidant. Physicochemical characterization techniques such as XRD, FESEM, EDX, BET and FTIR were performed to explore the correlation of catalytic performance with properties of the nanocatalysts. The XRD analysis confirmed the formation of crystalline TiO2 and/or ZrO2 in the synthesized samples. The FESEM and EDX images revealed the formation of homogeneous spherical agglomerates within the nanometer range and with a uniform dispersion over the surface of all samples, especially Cr/ZrO2 (P). The BET results proved the high surface area of Cr/ZrO2 (P) and Cr/TiO2 (P) nanocatalysts. Among all the samples, the Cr/ZrO2 (P) nanocatalyst had the highest specific surface area. Catalytic tests showed that Cr-based catalysts prepared by coprecipitation, had higher ethane conversion and ethylene yield in comparison to those prepared by impregnation method. Among all the samples, Cr/ZrO2 (P) had the highest ethane conversion (48% at 700 degrees C) and ethylene yield (43% at 700 degrees C). This could be attributed to the smaller particles, higher surface area, better dispersion of the active phase and uniform morphology of the Cr/ZrO2 (P) nanocatalyst.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据