4.6 Article

Effective removal of lead(II) from wastewater by amine-functionalized magnesium ferrite nanoparticles

期刊

RSC ADVANCES
卷 6, 期 53, 页码 47382-47393

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ra07680g

关键词

-

资金

  1. CMU Mid-Career Research Fellowship program
  2. Thailand Research Fund (TRF) [IRG5780013]
  3. Graduate School, Chiang Mai University
  4. Science Achievement Scholarship of Thailand (SAST)

向作者/读者索取更多资源

Mesoporous amine-functionalized magnesium ferrite nanoparticles (MgFe2O4-NH2 NPs), with maximum magnetization of around 35 emu g(-1), were successfully synthesized and simultaneously functionalized under a refluxing condition by using ethanolamine as a surface modifier. The grafting of amine groups onto the MgFe2O4 NPs was clearly confirmed by the Fourier transform infrared spectrum. Adopting the MgFe2O4-NH2 NPs as a magnetic nanoadsorbent for Pb2+ removal from simulated wastewater containing heavy metals is reported. Characterizations of the adsorption ability of MgFe2O4-NH2 nanoadsorbent as a function of aqueous solution pH, initial Pb2+ concentration and agitating time, as well as their adsorption kinetics and adsorption isotherms, were also performed. The adsorption of 25 mL of 10 mg L (1) Pb2+ initial concentration onto 25 mg of MgFe2O4-NH2 nanoadsorbent reached equilibrium within 10 min at pH 4 with 99% removal efficiency. Kinetics and isotherms of the adsorption were fitted with pseudo-second-order model and Langmuir model, respectively, indicating the strong chemisorption through coordinative bond formation between the amine groups and Pb2+ ions. This MgFe2O4-NH2 nanoadsorbent possesses a maximum capacity, calculated from Langmuir equation, of around 135.1 mg g(-1), which is higher than those of typical amine-functionalized adsorbents. Also, the selectivity experiments show that the MgFe2O4-NH2 nanoadsorbent provides higher selectivity coefficient values for Pb2+ than Ca2+, Cd2+, Zn2+, Cu2+ and Ni2+.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据